Percentage of High School Students Who Had Obesity, ${ }^{*}$ by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger}$ 2021

* ≥ 95 th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; 9$ 9th >12 th; $\mathrm{N}>\mathrm{H}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Had Obesity,* 1999-2021 ${ }^{\dagger}$

* ≥ 95 th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\dagger}$ Increased 1999-2021, increased 1999-2005, increased 2005-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Were Overweight,* by Sex, Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

${ }^{*} \geq 85$ th percentile but <95th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017 , new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
t9th > 11th, 9th > 12th, 10 th >11 th, 10 th >12 th; $\mathrm{H}>\mathrm{W}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Were Overweight,* 1999-2021†

* \geq 85th percentile but <95th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.
${ }^{\dagger}$ Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Described Themselves As Slightly or Very Overweight, by Sex,, Grade, and Race/Ethnicity,* 2021

${ }^{\circ} \mathrm{F}>\mathrm{M} ; \mathrm{H}>\mathrm{W}, \mathrm{N}>\mathrm{H}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Described Themselves As Slightly or Very Overweight,

 1993-2021*

Decreased 1993-2021, decreased 1993-1997, no change 1997-2021 [Based on linear and quadratic trend analyses using logistic regression models controling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Were Trying to Lose Weight, by Sex, * Grade, and Race/Ethnicity,* 2021

${ }^{*} \mathrm{~F}>\mathrm{M} ; \mathrm{H}>\mathrm{W}, \mathrm{N}>\mathrm{H}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Were Trying to Lose Weight, 1993-2021*

No change 1993-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).] This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Fruit Juice,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{\text { }} 2021$

*100\% fruit juices one or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{F}>\mathrm{M} ; \mathrm{H}>\mathrm{N}, \mathrm{W}>\mathrm{N}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Fruit Juice,* 1999-2021 ${ }^{\dagger}$

*100\% fruit juices one or more times during the 7 days before the survey
${ }^{\dagger}$ Increased 1999-2021, increased 1999-2011, increased 2011-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Fruit,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{+} 2021$

*One or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F}$; $\mathrm{H}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Fruit,* 1999-2021 ${ }^{\dagger}$

*One or more times during the 7 days before the survey
${ }^{\dagger}$ Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Fruit or Drink 100\% Fruit Juices,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, 2021

[^0]Percentage of High School Students Who Did Not Eat Fruit or Drink 100\% Fruit Juices,* 1999$2021{ }^{\dagger}$

*Such as orange juice, apple juice, or grape juice, during the 7 days before the survey
${ }^{\dagger}$ No change 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Ate Fruit or Drank 100\% Fruit Juices One or More Times Per Day,* by Sex, Grade, ${ }^{\dagger}$ and Race/Ethnicity, 2021

*Such as orange juice, apple juice, or grape juice, during the 7 days before the survey
t9th >12 th, 10 th >12 th (Based on t -test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Ate Fruit or Drank 100\% Fruit Juices One or More Times Per Day,* 1999-2021 ${ }^{\dagger}$

*Such as orange juice, apple juice, or grape juice, during the 7 days before the survey
${ }^{\dagger}$ Decreased 1999-2021, no change 1999-2015, decreased 2015-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Ate Fruit or Drank 100\% Fruit Juices Two or More Times Per Day,* by Sex, Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

*Such as orange juice, apple juice, or grape juice, during the 7 days before the survey
t9th > 12th; B > W (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Ate Fruit or Drank 100\% Fruit Juices Two or More Times Per Day,* 1999-2021 ${ }^{\dagger}$

*Such as orange juice, apple juice, or grape juice, during the 7 days before the survey
${ }^{\dagger}$ Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Green Salad, ${ }^{*}$ by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

*One or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{M}$ > F; 10th > 12th; $\mathrm{H}>\mathrm{W}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Green Salad,* 1999-2021 ${ }^{\dagger}$

*One or more times during the 7 days before the survey
${ }^{\dagger}$ Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Potatoes,* by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, 2021

*One or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{F}>\mathrm{M}$; 9th > 12th (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Potatoes, * 1999-2021 ${ }^{\dagger}$

*One or more times during the 7 days before the survey
${ }^{\dagger}$ Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Carrots,* by Sex, Grade, and Race/Ethnicity, ${ }^{\dagger} 2021$

*One or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{H}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Carrots,* 1999-2021†

*One or more times during the 7 days before the survey
${ }^{\dagger}$ Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Other Vegetables,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{\dagger} 2021$

*One or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; \mathrm{H}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Other Vegetables,* 1999-2021 ${ }^{\dagger}$

*One or more times during the 7 days before the survey
${ }^{\dagger}$ Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Vegetables,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, 2021

[^1]Percentage of High School Students Who Did Not Eat Vegetables,* 1999-2021 ${ }^{\dagger}$

*Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
${ }^{\dagger}$ Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables One or More Times Per Day,* by Sex, Grade, and Race/Ethnicity, ${ }^{\dagger} 2021$

*Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
+W > N (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables One or More Times Per Day,* 1999-2021 ${ }^{\dagger}$

*Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
${ }^{\dagger}$ Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables Two or More Times Per Day,* by Sex, Grade, and Race/Ethnicity, 2021

Percentage of High School Students Who Ate Vegetables Two or More Times Per Day,* 1999-2021 ${ }^{\dagger}$

*Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
${ }^{\dagger}$ Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables Three or More Times Per Day,* by Sex, Grade, ${ }^{\dagger}$ and Race/Ethnicity, 2021

[^2]
Percentage of High School Students Who Ate Vegetables Three or More Times Per Day,* 1999$2021{ }^{\dagger}$

*Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
${ }^{\dagger}$ No change 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Drink a Can, Bottle, or Glass of Soda or Pop,* by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, 2021

*Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, one or more times during the 7 days before the survey
${ }^{\dagger} \mathrm{F} />\mathrm{M}$; 12th >9 th (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Drink a Can, Bottle, or Glass of Soda or Pop,*

 2007-2021 ${ }^{\dagger}$

[^3]Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop One or More Times Per Day, ${ }^{*}$ by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{\dagger} 2021$

*Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; \mathrm{B}>\mathrm{N}, \mathrm{B}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop One or More Times Per Day,* 2007-2021 ${ }^{\dagger}$

*Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey
${ }^{\dagger}$ Decreased 2007-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop Two or More Times Per Day, ${ }^{*}$ by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{\dagger} 2021$

*Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; \mathrm{B}>\mathrm{N}, \mathrm{B}>\mathrm{W}, \mathrm{H}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop Two or More Times Per Day,* 2007-2021 ${ }^{\dagger}$

*Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey
${ }^{\dagger}$ Decreased 2007-2021, decreased 2007-2011, decreased 2011-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Milk,* by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, 2021

*Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey
${ }^{+} \mathrm{F}>\mathrm{M}$; 11th >9 th, 12 th >9 th, 12 th >10 th, 12 th >11 th (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Milk,* 2013-2021 ${ }^{\dagger}$

*Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey
${ }^{\dagger}$ Increased 2013-2021 [Based on linear trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$).]
This graph contains weighted results.

Percentage of High School Students Who Drank One or More Glasses Per Day of Milk,* by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

*Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; 9$ th > 12th, 10 th >12 th; $\mathrm{B}>\mathrm{N}, \mathrm{W}>\mathrm{H}, \mathrm{W}>\mathrm{N}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Drank One or More Glasses Per Day of Milk,*2013-2021 ${ }^{\dagger}$

*Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey
${ }^{\dagger}$ Decreased 2013-2021 [Based on linear trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$).]
This graph contains weighted results.

Percentage of High School Students Who Drank Three or More Glasses Per Day of Milk,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{\dagger} 2021$

*Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; \mathrm{W}>\mathrm{H}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Drank Three or More Glasses Per Day of Milk,* 2013$2021^{\dagger}$

*Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey
${ }^{\dagger}$ Decreased 2013-2021 [Based on linear trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$).]
This graph contains weighted results.

Percentage of High School Students Who Did Not Drink a Can, Bottle, or Glass of a Sports Drink, ${ }^{*}$ by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

[^4]Percentage of High School Students Who Drank a Can, Bottle, or Glass of a Sports Drink One or More Times Per Day,* by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

[^5]Percentage of High School Students Who Drank a Can, Bottle, or Glass of a Sports Drink Two or More Times Per Day,* by Sex, ${ }^{\dagger}$ Grade, ${ }^{\dagger}$ and Race/Ethnicity, ${ }^{\dagger} 2021$

[^6]Percentage of High School Students Who Did Not Eat Breakfast,* by Sex, Grade, and Race/Ethnicity, ${ }^{+} 2021$

*During the 7 days before the survey
${ }^{\dagger} \mathrm{H}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Breakfast,* 2011-2021 ${ }^{\dagger}$

*During the 7 days before the survey
${ }^{\dagger}$ Increased 2011-2021, no change 2011-2017, increased 2017-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Ate Breakfast on All 7 Days,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, ${ }^{+} 2021$

*During the 7 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F} ; \mathrm{W}>\mathrm{H}, \mathrm{W}>\mathrm{N}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

Percentage of High School Students Who Ate Breakfast on All 7 Days,* 2011-2021†

*During the 7 days before the survey
${ }^{\dagger}$ Decreased 2011-2021, decreased 2011-2017, decreased 2017-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($\mathrm{p}<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
This graph contains weighted results.

Percentage of High School Students Who Most of the Time or Always Went Hungry Because There Was Not Enough Food in Their Home,* by Sex, ${ }^{\dagger}$ Grade, and Race/Ethnicity, 2021

*During the 30 days before the survey
${ }^{\dagger} \mathrm{M}>\mathrm{F}$ (Based on t -test analysis, $\mathrm{p}<0.05$.)
All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
This graph contains weighted results.

[^0]: *Such as orange juice, apple juice, or grape juice, during the 7 days before the survey
 ${ }^{\dagger} \mathrm{M}$ > F (Based on t -test analysis, $\mathrm{p}<0.05$.)
 All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
 This graph contains weighted results.

[^1]: *Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
 ${ }^{\dagger} \mathrm{M}>\mathrm{F}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
 All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
 This graph contains weighted results.

[^2]: *Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey
 ${ }^{\text {t}}$ th >12 th (Based on t-test analysis, $\mathrm{p}<0.05$.)
 All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
 This graph contains weighted results.

[^3]: *Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, one or more times during the 7 days before the survey
 ${ }^{\dagger}$ Increased 2007-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade ($p<0.05$). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]
 This graph contains weighted results.

[^4]: *Such as Gatorade or PowerAde, not counting low-calorie sports drinks such as Propel or G2, during the 7 days before the survey
 ${ }^{\dagger} \mathrm{F}>\mathrm{M}$; 11th >9 th, 12 th >9 th; $\mathrm{B}>\mathrm{N}, \mathrm{H}>\mathrm{N}, \mathrm{W}>\mathrm{H}, \mathrm{W}>\mathrm{N}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
 All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
 This graph contains weighted results.

[^5]: *Such as Gatorade or Powerade, not counting low calorie sports drinks such as Propel or G2, during the 7 days before the survey
 ${ }^{\dagger} \mathrm{M} ~>~ F ; 9$ th >12 th; $\mathrm{H}>\mathrm{W}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
 All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
 This graph contains weighted results.

[^6]: *Such as Gatorade or Powerade, not counting low calorie sports drinks such as Propel or G2, during the 7 days before the survey ${ }^{\dagger} \mathrm{M}>\mathrm{F}$; 9th > 12th; $\mathrm{B}>\mathrm{W}, \mathrm{H}>\mathrm{W}, \mathrm{N}>\mathrm{W}$ (Based on t-test analysis, $\mathrm{p}<0.05$.)
 All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.
 This graph contains weighted results.

