Percentage of High School Students Who Had Obesity,* by Sex,† Grade,† and Race/Ethnicity,† 2021

^{* ≥ 95}th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.

 $^{^{\}dagger}M > F$; 9th > 12th; N > H, N > W (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

Percentage of High School Students Who Had Obesity,* 1999-2021[†]

^{* ≥ 95}th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.

^{*}Increased 1999-2021, increased 1999-2005, increased 2005-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

Percentage of High School Students Who Were Overweight,* by Sex, Grade,† and Race/Ethnicity,† 2021

^{* ≥ 85}th percentile but <95th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.

†9th > 11th, 9th > 12th, 10th > 11th, 10th > 12th; H > W, N > W (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

Percentage of High School Students Who Were Overweight,* 1999-2021[†]

^{* ≥ 85}th percentile but <95th percentile for body mass index, based on sex- and age-specific reference data from the 2000 CDC growth charts. In 2017, new, slightly different ranges were used to calculate biologically implausible responses to height and weight questions.

[†]Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Described Themselves As Slightly or Very Overweight, by Sex,* Grade, and Race/Ethnicity,* 2021

 $^*F > M$; H > W, N > H, N > W (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Described Themselves As Slightly or Very Overweight, 1993-2021*

*Decreased 1993-2021, decreased 1993-1997, no change 1997-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Were Trying to Lose Weight, by Sex,* Grade, and Race/Ethnicity,* 2021

 $^*F > M$; H > W, N > H, N > W (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Were Trying to Lose Weight, 1993-2021*

No change 1993-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Fruit Juice,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*100%} fruit juices one or more times during the 7 days before the survey ${}^{\dagger}F > M$; H > N, W > N (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Fruit Juice,* 1999-2021

^{*100%} fruit juices one or more times during the 7 days before the survey

[†]Increased 1999-2021, increased 1999-2011, increased 2011-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

Percentage of High School Students Who Did Not Eat Fruit,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*}One or more times during the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

 $^{^{\}dagger}M > F; H > W$ (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Did Not Eat Fruit,* 1999-2021[†]

^{*}One or more times during the 7 days before the survey

[†]Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).] This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Fruit or Drink 100% Fruit Juices,* by Sex,† Grade, and Race/Ethnicity, 2021

^{*}Such as orange juice, apple juice, or grape juice, during the 7 days before the survey ${}^{\dagger}M > F$ (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Fruit or Drink 100% Fruit Juices,* 1999-2021†

^{*}Such as orange juice, apple juice, or grape juice, during the 7 days before the survey

†No change 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

Percentage of High School Students Who Ate Fruit or Drank 100% Fruit Juices One or More Times Per Day,* by Sex, Grade,† and Race/Ethnicity, 2021

^{*}Such as orange juice, apple juice, or grape juice, during the 7 days before the survey $^{\dagger}9\text{th} > 12\text{th}$, 10th > 12th (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Ate Fruit or Drank 100% Fruit Juices One or More Times Per Day,* 1999-2021†

^{*}Such as orange juice, apple juice, or grape juice, during the 7 days before the survey

[†]Decreased 1999-2021, no change 1999-2015, decreased 2015-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

Percentage of High School Students Who Ate Fruit or Drank 100% Fruit Juices Two or More Times Per Day,* by Sex, Grade,† and Race/Ethnicity,† 2021

^{*}Such as orange juice, apple juice, or grape juice, during the 7 days before the survey $^{\dagger}9\text{th} > 12\text{th}; \ B > W$ (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Ate Fruit or Drank 100% Fruit Juices Two or More Times Per Day,* 1999-2021†

^{*}Such as orange juice, apple juice, or grape juice, during the 7 days before the survey

†Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Green Salad,* by Sex,† Grade,† and Race/Ethnicity,† 2021

^{*}One or more times during the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

 $^{^{\}dagger}M > F$; 10th > 12th; H > W, N > W (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Did Not Eat Green Salad,* 1999-2021[†]

^{*}One or more times during the 7 days before the survey

[†]Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Potatoes,* by Sex,† Grade,† and Race/Ethnicity, 2021

^{*}One or more times during the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

 $^{^{\}dagger}F > M$; 9th > 12th (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Did Not Eat Potatoes,* 1999-2021[†]

^{*}One or more times during the 7 days before the survey

[†]Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Carrots,* by Sex, Grade, and Race/Ethnicity,† 2021

^{*}One or more times during the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

[†]H > W (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Did Not Eat Carrots,* 1999-2021[†]

^{*}One or more times during the 7 days before the survey

[†]Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Other Vegetables,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*}One or more times during the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

[†]M > F; H > W (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Did Not Eat Other Vegetables,* 1999-2021

^{*}One or more times during the 7 days before the survey

[†]Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Vegetables,* by Sex,† Grade, and Race/Ethnicity, 2021

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey $^{\dagger}M > F$ (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Did Not Eat Vegetables,* 1999-2021[†]

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey

†Increased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant
linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables One or More Times Per Day,* by Sex, Grade, and Race/Ethnicity,† 2021

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey $^{\dagger}W > N$ (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables One or More Times Per Day,* 1999-2021

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey

†Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables Two or More Times Per Day,* by Sex, Grade, and Race/Ethnicity, 2021

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables Two or More Times Per Day,* 1999-2021

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey

†Decreased 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables Three or More Times Per Day,* by Sex, Grade,† and Race/Ethnicity, 2021

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey †9th > 12th (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Ate Vegetables Three or More Times Per Day,* 1999-2021[†]

^{*}Green salad, potatoes [excluding french fries, fried potatoes, or potato chips], carrots, or other vegetables, during the 7 days before the survey

†No change 1999-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Drink a Can, Bottle, or Glass of Soda or Pop,* by Sex,† Grade,† and Race/Ethnicity, 2021

^{*}Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, one or more times during the 7 days before the survey $^{\dagger}F > M$; 12th > 9th (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Did Not Drink a Can, Bottle, or Glass of Soda or Pop,* 2007-2021[†]

^{*}Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, one or more times during the 7 days before the survey

†Increased 2007-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop One or More Times Per Day,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*}Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey ${}^{\dagger}M > F$; B > N, B > W (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop One or More Times Per Day,* 2007-2021[†]

^{*}Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey

†Decreased 2007-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop Two or More Times Per Day,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*}Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey ${}^{\dagger}M > F; B > N, B > W, H > W$ (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of Soda or Pop Two or More Times Per Day,* 2007-2021[†]

^{*}Such as Coke, Pepsi, or Sprite, not counting diet soda or diet pop, during the 7 days before the survey

†Decreased 2007-2021, decreased 2007-2011, decreased 2011-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

This graph contains weighted results.

Percentage of High School Students Who Did Not Drink Milk,* by Sex,† Grade,† and Race/Ethnicity, 2021

^{*}Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey

 $^{\dagger}F > M$; 11th > 9th, 12th > 9th, 12th > 10th, 12th > 11th (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

Percentage of High School Students Who Did Not Drink Milk,* 2013-2021[†]

^{*}Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey

[†]Increased 2013-2021 [Based on linear trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05).] This graph contains weighted results.

Percentage of High School Students Who Drank One or More Glasses Per Day of Milk,* by Sex,† Grade,† and Race/Ethnicity,† 2021

^{*}Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey

 $^{^{\}dagger}M > F$; 9th > 12th, 10th > 12th; B > N, W > H, W > N (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

Percentage of High School Students Who Drank One or More Glasses Per Day of Milk,* 2013-2021[†]

^{*}Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey

[†]Decreased 2013-2021 [Based on linear trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05).] This graph contains weighted results.

Percentage of High School Students Who Drank Three or More Glasses Per Day of Milk,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*}Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

 $^{^{\}dagger}M > F; W > H$ (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Drank Three or More Glasses Per Day of Milk,* 2013-2021[†]

^{*}Counting the milk they drank in a glass or cup, from a carton, or with cereal and counting the half pint of milk served at school as equal to one glass, during the 7 days before the survey

[†]Decreased 2013-2021 [Based on linear trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05).] This graph contains weighted results.

Percentage of High School Students Who Did Not Drink a Can, Bottle, or Glass of a Sports Drink,* by Sex,† Grade,† and Race/Ethnicity,† 2021

^{*}Such as Gatorade or PowerAde, not counting low-calorie sports drinks such as Propel or G2, during the 7 days before the survey ${}^{\dagger}F > M$; 11th > 9th, 12th > 9th; B > N, H > N, W > H, W > N (Based on t-test analysis, p < 0.05.) All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of a Sports Drink One or More Times Per Day,* by Sex,† Grade,† and Race/Ethnicity,† 2021

^{*}Such as Gatorade or Powerade, not counting low calorie sports drinks such as Propel or G2, during the 7 days before the survey ${}^{\dagger}M > F$; 9th > 12th; H > W, N > W (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic. This graph contains weighted results.

Percentage of High School Students Who Drank a Can, Bottle, or Glass of a Sports Drink Two or More Times Per Day,* by Sex,† Grade,† and Race/Ethnicity,† 2021

^{*}Such as Gatorade or Powerade, not counting low calorie sports drinks such as Propel or G2, during the 7 days before the survey †M > F; 9th > 12th; B > W, H > W, N > W (Based on t-test analysis, p < 0.05.)

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

Percentage of High School Students Who Did Not Eat Breakfast,* by Sex, Grade, and Race/Ethnicity,† 2021

^{*}During the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

[†]H > W (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Did Not Eat Breakfast,* 2011-2021[†]

^{*}During the 7 days before the survey

†Increased 2011-2021, no change 2011-2017, increased 2017-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

Percentage of High School Students Who Ate Breakfast on All 7 Days,* by Sex,† Grade, and Race/Ethnicity,† 2021

^{*}During the 7 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

 $^{^{\}dagger}M > F; W > H, W > N$ (Based on t-test analysis, p < 0.05.)

Percentage of High School Students Who Ate Breakfast on All 7 Days,* 2011-2021[†]

^{*}During the 7 days before the survey

[†]Decreased 2011-2021, decreased 2011-2017, decreased 2017-2021 [Based on linear and quadratic trend analyses using logistic regression models controlling for sex, race/ethnicity, and grade (p < 0.05). Significant linear trends (if present) across all available years are described first followed by linear changes in each segment of significant quadratic trends (if present).]

Percentage of High School Students Who Most of the Time or Always Went Hungry Because There Was Not Enough Food in Their Home,* by Sex,† Grade, and Race/Ethnicity, 2021

^{*}During the 30 days before the survey

All Hispanic students are included in the Hispanic category. All other races are non-Hispanic.

 $^{^{\}dagger}M > F$ (Based on t-test analysis, p < 0.05.)