1	STANDARDS FOR COMPUTER SCIENCE FOR GRADES K-12
2	1. The content areas covered by the computer science standards include:
3	 a. algorithms and programming;
4	b. computing systems;
5	c. data and analysis;
6	d. impacts of computing; and,
7	e. computer science networks and the internet
8	2. When a district incorporates or integrates computer science content into district
9	curriculum or offers a course in computer science, the following skills at each grade level
10	apply:
11	a. fostering an inclusive computing culture
12	b. collaborating around computing
13	c. recognizing and defining computational problems
14	d. developing and using abstractions
15	e. creating computational artifacts
16	f. testing and refining computational artifacts
17	g. communicating about computing

1	COMP	UTER SCIENCE CONTENT STANDARDS FOR KINDERGARTEN
2	1.	Computer science algorithms and programming standards for kindergarten are:
3		a. follow step-by-step instructions
4		 recognize that numbers and symbols represent information
5	2.	Computer science computing systems standards for kindergarten are:
6		a. identify computing devices
7		b. identify examples of common hardware and software
8	3.	Computer science data and analysis standards for kindergarten are:
9		a. collect and categorize data
10		b. retrieve information
11		c. identify patterns in data
12	4.	Computer science impacts of computing standards for kindergarten are:
13		 a. work respectfully and responsibly in groups
14		b. keep login information private and log off devices appropriately

1	THEC	OMPUTER SCIENCE CONTENT STANDARDS FOR FIRST GRADE
2	1.	Computer science algorithms and programming standards for first grade are:
3		 a. retell step-by-step instructions to complete a task
4		 b. use numbers and symbols to represent information
5		c. arrange sequences and simple loops in correct order
6	2.	Computer science computing systems standards for first grade are:
7		 a. identify tasks that can be performed by computing devices
8		b. use appropriate terminology in identifying common hardware and software
9		c. identify simple hardware and software problems
10	3.	Computer science data and analysis standards for first grade are:
11		 a. collect and categorize data in up to three categories
12		b. retrieve, arrange, and modify information
13		c. identify patterns in data
14	4.	Computer science impacts of computing standards for first grade are:
15		 a. work respectfully and responsibly in groups
16		b. keep login information private and log off devices appropriately

1	THE C	OMPU	TER SCIENCE CONTENT STANDARDS FOR SECOND GRADE
2	1.	Comp	uter science algorithms and programming standards for second grade are:
3		a.	model daily processes by creating and following sets of step-by-step instructions
4			to complete tasks
5		b.	model the way programs store and manipulate data by using numbers or other
6			symbols to represent information
7		C.	develop programs with sequences and simple loops, to express ideas or address
8			a problem
9		d.	break down the steps needed to solve a problem into a precise sequence of
10			instructions
11	2.	•	uter science computing systems standards for second grade are:
12			select and operate appropriate devices to perform a variety of tasks
13		b.	use appropriate terminology in identifying and describing the function of common
14			hardware and software
15		C.	describe basic hardware and software problems using accurate terminology
16	3.	Comp	uter science data and analysis standards for second grade are:
17			collect and present the data in various visual formats
18			define data as gathered and stored information
19		C.	identify and describe patterns in data visualizations, such as charts or graphs, to
20			make predictions
21	4.	•	uter science impacts of computing standards for second grade are:
22		a.	identify how people live and work differently after the implementation of new
23			computing technology, including American Indians
24			work respectfully and responsibly online
25		C.	keep login information private and log off devices appropriately
26	5.	•	uter science networks and the internet standards for second grade are:
27			explain what passwords are and why we use them
28		b.	recognize that computing devices and the internet enable us to connect with
29			other people, places, information, and ideas

1	THE C	OMPU	TER SCIENCE CONTENT STANDARDS FOR THIRD GRADE
2	1.	Comp	uter science algorithms and programming standards for third grade are:
3		a.	compare and contrast multiple algorithms to complete the same task
4		b.	break down problems into smaller, manageable subproblems to facilitate the
5			program development process
6		C.	describe steps taken and choices made during the process of program
7			development
8		d.	identify intellectual property rights and give appropriate credit when creating or
9			remixing programs
10	2.	Comp	uter science computing systems standards for third grade are:
11		a.	identify the internal and external parts of computing devices
12		b.	determine potential solutions to solve simple hardware and software problems
13			using common troubleshooting strategies
14	3.	Comp	uter science data and analysis standards for third grade are:
15		a.	collect data from multiple sources and display the data in graphs
16		b.	describe multiple types of data
17		C.	understand the accuracy of predictions and how they are influenced by the
18			amount of data collected
19	4.	-	uter science impacts of computing standards for third grade are:
20		a.	seek diverse perspectives for the purpose of improving computational artifacts
21		b.	apply laws associated with digital information
22		C.	describe ethical issues that relate to computing devices and networks
23	5.	Comp	uter science networks and the internet standards for third grade are:
24		a.	identify real-world cybersecurity problems and how personal information can be
25			protected

1	THE C	OMPU	TER SCIENCE CONTENT STANDARDS FOR FOURTH GRADE
2	1.	Comp	uter science algorithms and programming standards for fourth grade are:
3		a.	compare and refine multiple algorithms for the same task and determine which is
4			the most appropriate
5		b.	decompose problems into smaller, manageable subproblems to facilitate the
6			program development process
7		C.	test and debug a program or algorithm to ensure it runs as intended
8	2.	Comp	uter science computing systems standards for fourth grade are:
9		a.	explain the function of individual internal and external parts
10		b.	determine potential solutions to solve simple hardware and software problems
11			using common troubleshooting strategies
12	3.	Comp	uter science data and analysis standards for fourth grade are:
13		a.	select and use appropriate non-digital and digital tools to collect and represent
14			data
15		b.	identify and use multiple types of data to complete a task
16			evaluate the validity of data based on accuracy and relevance
17	4.	-	outer science impacts of computing standards for fourth grade are:
18			seek diverse perspectives for the purpose of improving computational artifacts
19			apply laws associated with digital information
20			describe ethical issues that relate to computing devices and networks
21	5.	-	uter science networks and the internet standards for fourth grade are:
22		a.	identify real-world cybersecurity problems and how personal information can be
23			protected

THE COMPUTER SCIENCE CONTENT STANDARDS FOR FIFTH GRADE

2	1.	Comp	uter science algorithms and programming standards for fifth grade are:
3		a.	compare and refine multiple algorithms for the same task and determine which is
4			the most appropriate
5		b.	create programs that use variables to store and modify data
6		c.	create programs that include sequences, events, loops, and conditionals
7		d.	modify, remix, or incorporate portions of an existing program into one's own work,
8			to develop something new or add more advanced features
9		e.	describe choices made during program development
10	2.	Comp	uter science computing systems standards for fifth grade are:
11		a.	describe how internal and external parts of computing devices function to form a
12			system
13		b.	model how computer hardware and software work together as a system to
14			accomplish tasks
15		c.	determine potential solutions to solve simple hardware and software problems
16			using common troubleshooting strategies
17	3.	Comp	uter science data and analysis standards for fifth grade are:
18		a.	organize and present collected data visually to highlight relationships and support
19			a claim
20		b.	demonstrate how to store, copy, search, retrieve, modify, and delete information
21			using a computing device
22		C.	use accurate and relevant data to highlight or propose cause-and-effect
23			relationships, predict outcomes, or communicate an idea
24	4.	Comp	uter science impacts of computing standards for fifth grade are:
25		a.	explain how computing technologies have changed Montana and the world, and
26			express how those technologies influence, and are influenced by, cultural
27			practices, including American Indians
28		b.	identify ways to improve the accessibility and usability of technology products for
29			the diverse needs and wants of users
30			utilize diverse perspectives for the purpose of improving computational artifacts
31			apply laws associated with digital information and intellectual property
32			describe ethical issues that relate to computing devices and networks
33	5.	•	uter science networks and the internet standards for fifth grade are:
34		a.	explain real-world cybersecurity problems and how personal information can be
35			protected
36		b.	model how information is broken down and transmitted through multiple devices
37			over networks and the internet and reassembled at the destination

1 2	THE C		TER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH	
3	Computer science algorithms and programming standards for sixth through eighth			
4	grades are:			
5		•	use algorithms to address complex problems	
6			create clearly named variables that represent different data types and perform	
7		ъ.	operations on their values	
8		C	develop programs that combine control structures, including nested loops and	
9		O.	compound conditionals	
10		d.	decompose problems and subproblems into parts to facilitate the design,	
11		۵.	implementation, and review of programs	
12		e.	create procedures with parameters to organize code and make it easier to reuse	
13		f.	seek and incorporate feedback from team members and users to refine a	
14			solution that meets user needs	
15		g.	incorporate existing code, media, and libraries into original programs, and give	
16		Ū	attribution	
17		h.	systematically test and refine programs using a range of test cases	
18		i.	distribute tasks and maintain a project timeline when collaboratively developing	
19			computational artifacts	
20		j.	document programs in order to make them easier to follow, test, and debug	
21	2.	Comp	uter science computing systems standards for sixth through eighth grades are:	
22		a.	recommend improvements to the design of computing devices, based on an	
23			analysis of how users interact with the devices	
24		b.	design projects that combine hardware and software components to collect and	
25			exchange data	
26		C.	systematically identify and fix problems with computing devices and their	
27			components	
28	3.	-	uter science data and analysis standards for sixth through eighth grades are:	
29		a.	collect data using computational tools and transform the data to make it more	
30			useful and reliable	
31			represent data using multiple formats	
32			refine computational models based on the data they have generated	
33	4.		uter science impacts of computing standards for sixth through eighth grades are:	
34		a.	compare tradeoffs associated with computing technologies that affect people's	
35			everyday activities and career options in Montana and the world, including	
36			American Indians	
37			discuss issues of bias and accessibility in the design of existing technologies	
38		C.	,	
39		d.	describe tradeoffs between allowing information, personal or intellectual, to be	

public and keeping information private and secure

40

5. Computer science networks and the internet standards for sixth through eighth grades are:

1 2

3

4

5 6

7

- a. explain how physical and digital security measures protect electronic information
- b. apply multiple methods of encryption to model the secure transmission of information
- c. model the role of packets and protocols in transmitting data across networks and the internet

1	THE COMPU	TER SCIENCE CONTENT STANDARDS FOR NINTH THROUGH TWELFTH		
2	GRADES			
3	1. Computer science algorithms and programming standards for ninth through twelfth			
4	grades	s are:		
5	a.	create prototypes that use algorithms to solve computational problems by		
6		leveraging prior student knowledge and personal interests		
7	b.	describe how artificial intelligence drives many software and physical systems		
8	C.	implement an artificial intelligence algorithm to play a game against a human		
9		opponent or solve a problem		
10	d.	use and adapt classic algorithms to solve computational problems		
11	e.	evaluate algorithms in terms of their efficiency, correctness, and clarity		
12	f.	use lists to simplify solutions, generalizing computational problems instead of		
13		repeatedly using simple variables		
14	g.	compare and contrast fundamental data structures and their uses		
15	h.	justify the selection of specific control structures when tradeoffs involve		
16		implementation, readability, and program performance, and explain the benefits		
17		and drawbacks of choices made		
18	i.	design and iteratively develop computational artifacts for practical intent,		
19		personal expression, or to address a societal issue by using events to initiate		
20		instructions		
21	j.	decompose problems into smaller components through systematic analysis,		
22		using constructs such as procedures, modules, or objects		
23	k.	create artifacts by using procedures within a program, combinations of data and		
24		procedures, or independent but interrelated programs		
25	l.	construct solutions to problems using student-created components, such as		
26		procedures, modules or objects		
27	m.	analyze a large-scale computational problem and identify generalizable patterns		
28		that can be applied to a solution		
29	n.	demonstrate code reuse by creating programming solutions using libraries and		
30		application programming interfaces		
31	0.	systematically design and develop programs for broad audiences by		
32		incorporating feedback from users		
33	p.	evaluate and refine computational artifacts to make them more usable and		
34		accessible		
35	q.	design and develop computational artifacts working in team roles using		
36		collaborative tools		

r. document design decisions using text, graphics, presentations, or demonstrations in the development of complex programs

s. plan and develop programs for broad audiences using a software life cycle

37

38

39

40

process

T		ι.	explain security issues that might lead to compromised computer programs
2		u.	develop programs for multiple computing platforms
3		٧.	use version control systems, integrated development environments, and
4			collaborative tools and practices in a group software project
5		w.	develop and use a series of test cases to verify that a program performs
6			according to its design specifications
7		Х.	modify an existing program to add additional functionality and discuss intended
8			and unintended implications
9		-	evaluate key qualities of a program through a process such as a code review
10		Z.	compare multiple programming languages and discuss how their features make
11	_	_	them suitable for solving different types of problems
12	2.	Comp	uter science computing systems standards for ninth through twelfth grades are:
13		a.	explain how abstractions hide the underlying implementation details of computing
14			systems embedded in everyday objects
15		b.	compare levels of abstraction and interactions between application software,
16			system software, and hardware layers
17			categorize the roles of operating system software
18		a.	develop guidelines that convey systematic troubleshooting strategies that others
19		_	can use to identify and fix errors
20		e.	illustrate ways computing systems implement logic, input, and output through
21	2	Comp	hardware components
22	٥.	-	uter science data and analysis standards for ninth through twelfth grades are:
23 24		a.	create interactive data visualizations using software tools to help others better understand real-world phenomena
24 25		h	use data analysis tools and techniques to identify patterns in data representing
25 26		D.	complex systems
<u>2</u> 0 27		C	select data collection tools and techniques to generate data sets that support a
28		0.	claim or communicate information
<u> 2</u> 9		d.	translate between different bit representations of real-world phenomena, such as
30		۵.	characters, numbers, and images
31		e.	evaluate the tradeoffs in how data elements are organized and where data is
32			stored
33		f.	create computational models that represent the relationships among different
34			elements of data collected from a phenomenon or process
35		g.	evaluate the ability of models and simulations to test and support the refinement
36		· ·	of hypotheses
37	4.	Comp	uter science impacts of computing standards for ninth through twelfth grades are:
38		a.	evaluate the ways computing technologies, globally and locally, impact personal,
39			ethical, social, economic, and cultural practices, including American Indians
10		h	tost and refine computational artifacts to reduce higs and equity deficits

1	C.	demonstrate ways a given algorithm applies to problems across disciplines
2	d.	evaluate computational artifacts to maximize their beneficial effects and minimize
3		harmful effects on society
4	e.	evaluate the impact of equity, access, and influence on the distribution of
5		computing resources in a global society
6	f.	predict how computational innovations that have revolutionized aspects of our
7		culture might evolve
8	g.	use tools and methods for collaboration on a project to increase connectivity of
9		people in different cultures and career fields
10 11	h.	explain the beneficial and harmful effects that intellectual property laws can have on innovation
12	i.	explain the privacy concerns related to the collection and generation of data
13		through automated processes that may not be evident to users
14	j.	evaluate the social and economic implications of privacy in the context of safety,
15		law, or ethics
16	k.	debate laws and regulations that impact the development and use of software
17	5. Comp	uter science networks and the internet standards for ninth through twelfth grades
18	are:	
19	a.	recommend security measures to address various scenarios based on factors
20		such as efficiency, feasibility, and ethical impacts
21	b.	explain tradeoffs when selecting and implementing cybersecurity
22		recommendations
23	C.	compare ways software developers protect devices and information from
24		unauthorized access
25	d.	evaluate the scalability and reliability of networks, by describing the relationship
26		between routers, switches, servers, topology, and addressing
27	e.	give examples to illustrate how sensitive data can be affected by malware and
28		other attacks
29	f.	compare various security measures, considering tradeoffs between the usability
30		and security of a computing system
31	g.	discuss the issues that impact functionality

Administrative Rules of Montana Chapter 55 – NEW RULE PROPOSAL 1 Computer Science Program Delivery Standards 2 1. In general, a basic program in computer science education shall: 3 4 a. meet the following conditions: 5 i. provide a well-articulated integrated curriculum that challenges students to learn increasingly more sophisticated computer science concepts 6 ii. foster a collaborative environment that embraces creativity, 7 8 communication, and problem solving 9 b. include the following practices: i. ensures students become informed citizens who can critically engage in 10 public discussion on computer science related topics 11 ii. ensures students develop as learners, users, and creators of computer 12 13 science knowledge and artifacts 14 iii. ensures students understand the role of computing in the world around them, leveraging computer technology to create solutions 15

iv. increase career and college readiness

16